Panels A-D of Figure 1 are diagrams and images. The remaining panels were generated in R as shown here. Note all LC-MS data was quantified via absorbance. Chromatogram peaks were integrated in the Waters Empower software and integrations were exported and are contained in the csv files used here.
Setup packages and plotting for the notebook:
# Check packages
source("../../tools/package_setup.R")
# Load packages
library(tidyverse)
library(cowplot)
library(kableExtra)
# Code display options
knitr::opts_chunk$set(tidy.opts=list(width.cutoff=60),tidy=FALSE, echo = TRUE, message=FALSE, warning=FALSE, fig.align="center", fig.retina = 2)
# Load plotting tools
source("../../tools/plotting_tools.R")
#Modify the plot theme
theme_set(theme_notebook())
Read in the data - concentrations quantified from LC (Absorbance) peaks with standard curve.
wt_extracts <- read_csv('../../../data/LC-MS/HPLC_data_colonies_02_16_18.csv')
wt_extracts %>% kable() %>% kable_styling() %>% scroll_box(height = '250px')
Name | strain | material | replicate | RT | Area | Channel Name | Amount |
---|---|---|---|---|---|---|---|
PYO | wt | agar | 1 | 6.233 | 48978 | 313.0nm | 2.069 |
PCA | wt | agar | 1 | 3.726 | 200697 | 364.0nm | 13.352 |
PCN | wt | agar | 1 | 9.071 | 478348 | 364.0nm | 31.599 |
PYO | wt | agar | 2 | 6.226 | 43440 | 313.0nm | 1.835 |
PCA | wt | agar | 2 | 3.685 | 150747 | 364.0nm | 10.029 |
PCN | wt | agar | 2 | 9.065 | 419476 | 364.0nm | 27.710 |
PYO | wt | agar | 3 | 6.243 | 41791 | 313.0nm | 1.765 |
PCA | wt | agar | 3 | 3.678 | 145807 | 364.0nm | 9.700 |
PCN | wt | agar | 3 | 9.073 | 390771 | 364.0nm | 25.813 |
PYO | wt | biofilm | 1 | 6.233 | 144296 | 313.0nm | 6.095 |
PCA | wt | biofilm | 1 | 3.804 | 18731 | 364.0nm | 1.246 |
PCN | wt | biofilm | 1 | 9.071 | 428081 | 364.0nm | 28.278 |
PYO | wt | biofilm | 2 | 6.236 | 133341 | 313.0nm | 5.632 |
PCA | wt | biofilm | 2 | 3.786 | 18272 | 364.0nm | 1.216 |
PCN | wt | biofilm | 2 | 9.064 | 408496 | 364.0nm | 26.984 |
PYO | wt | biofilm | 3 | 6.237 | 135965 | 313.0nm | 5.743 |
PCA | wt | biofilm | 3 | 3.772 | 18141 | 364.0nm | 1.207 |
PCN | wt | biofilm | 3 | 9.062 | 421803 | 364.0nm | 27.863 |
Now we need to convert the concentration (Amount column) into the concentration that existed in the biofilm or the agar, not the sample tube. For the agar, we know that there is 5mL and in this case 2mL of solution was added for extraction. For the biofilm, we estimate that the volume of the colony is about 60uL, and we resuspended it in 800uL. Here, I’ll also calculate the means, so we can look at the mean and individual measurements.
# Calculate concentration from Amount. For biofilm: Amount * 800 / 62, for agar: Amount * 7/5
wt_conc <- wt_extracts %>%
mutate(phz_conc = ifelse(material=='biofilm', Amount * (800 / 62), Amount * (7 / 5)))
# Calculate the mean concentration for each group - 'Name' is the measured phenazine
# Only assign mean to first observation, because we only need one bar
wt_conc_means <- wt_conc %>%
group_by(material, Name) %>%
mutate(mean = ifelse(replicate==1, mean(phz_conc), NA))
Let’s plot the data with a fixed scale, so we can see the pattern of phenazine production by the WT cells:
#Plot layout
plot_wt_fixed <- ggplot(wt_conc_means, aes(x = material, fill = material)) +
geom_col(aes(y = mean)) +
geom_jitter(aes(y = phz_conc), height = 0, width = 0.1, shape = 21) +
facet_wrap(~Name)
#Plot styling
plot_wt_fixed +
labs(x = NULL, y = expression("Phenazine concentration" ~ ( mu*M ))) +
theme(axis.title.x = element_text(size = 14), line = element_line(color = 'black', size = 0.25))
And now we’ll plot each phenazine on its own Y-axis.
#Plot layout
plot_wt_free <- ggplot(wt_conc_means, aes(x = material)) +
geom_col(aes(y = mean, fill = material)) +
geom_jitter(aes(y = phz_conc), height = 0, width = 0.1, shape = 21,color = 'black', size = 1) +
facet_wrap(~Name, scales = 'free')
#Plot styling
plot_wt_free_styled <- plot_wt_free +
labs(x = NULL, y = expression("Phenazine\nconcentration" ~ ( mu*M ))) +
theme(axis.title.x = element_text(size = 14)) +
scale_fill_manual(guide = F, values = c("#66CCFF","#FFCC66"))+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
plot_wt_free_styled
# Split dataset by material
wt_conc_means_agar <- wt_conc_means %>%
filter(material=='agar')
wt_conc_means_biofilm <- wt_conc_means %>%
filter(material=='biofilm')
# Join agar and cell observations and calculate retention ratios = biofilm / agar
wt_conc_means_join <- left_join(wt_conc_means_biofilm, wt_conc_means_agar,
by = c('strain','replicate','Name'),
suffix = c('_from_biofilm','_from_agar')) %>%
mutate(retention_ratio = phz_conc_from_biofilm / phz_conc_from_agar) %>%
mutate(mean_retention_ratio = mean_from_biofilm / mean_from_agar)
# Plot Layout
wt_ret_ratio <- ggplot(wt_conc_means_join ,aes(x=Name,y=retention_ratio))+
geom_col( aes(y = mean_retention_ratio), fill = 'light gray') +
geom_jitter(width=0.1,height=0,shape=21,size=1)
# Plot Stlying
wt_ret_ratio_styled <- wt_ret_ratio +
guides(fill=F) +
scale_y_continuous(labels = fold_label) +
labs(x = NULL, y = "[Biofilm] / [Agar]") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
wt_ret_ratio_styled
Let’s first read in the data. This csv contains the data for multiple experiments that were run on the LC-MS on the same day, so let’s just look at the dPHZ* colonies.
# Read in only the dPHZstar data, and convert the amount of phenazine added to a numeric
dphz_extracts <- read_csv('../../../data/LC-MS/2018_10_30_HPLC_concentrations_df.csv',comment = "#") %>%
filter(strain == 'dPHZstar') %>%
mutate(added_phz_num=as.double(str_extract(amount_added,"^[0-9.]+")))
dphz_extracts %>%
kable() %>%
kable_styling() %>%
scroll_box(height = '250px')
measured_phenazine | strain | amount_added | added_phenazine | material | replicate | RT | Area | Channel Name | Amount | calcConc | added_phz_num |
---|---|---|---|---|---|---|---|---|---|---|---|
PCA | dPHZstar | 0.1uM | PCA | cells | 1 | 3.183 | 61 | 364.0nm | 0.004 | 0.1146667 | 0.1 |
PCN | dPHZstar | 0.1uM | PCA | cells | 1 | 8.693 | 653 | 364.0nm | 0.043 | 1.2326667 | 0.1 |
PYO | dPHZstar | 0.1uM | PCA | cells | 1 | 5.976 | 20 | 313.0nm | 0.001 | 0.0286667 | 0.1 |
PCA | dPHZstar | 0.1uM | PCA | cells | 2 | 3.044 | 52 | 364.0nm | 0.003 | 0.0860000 | 0.1 |
PCN | dPHZstar | 0.1uM | PCA | cells | 2 | 8.700 | 744 | 364.0nm | 0.049 | 1.4046667 | 0.1 |
PCA | dPHZstar | 0.1uM | PCA | cells | 3 | 3.154 | 55 | 364.0nm | 0.004 | 0.1146667 | 0.1 |
PCN | dPHZstar | 0.1uM | PCA | cells | 3 | 8.686 | 756 | 364.0nm | 0.050 | 1.4333333 | 0.1 |
PCA | dPHZstar | 0.1uM | PCN | cells | 1 | 2.972 | 56 | 364.0nm | 0.004 | 0.1146667 | 0.1 |
PCN | dPHZstar | 0.1uM | PCN | cells | 1 | 8.696 | 880 | 364.0nm | 0.058 | 1.6626667 | 0.1 |
PYO | dPHZstar | 0.1uM | PCN | cells | 1 | 6.050 | 20 | 313.0nm | 0.001 | 0.0286667 | 0.1 |
PCA | dPHZstar | 0.1uM | PCN | cells | 2 | 3.294 | 70 | 364.0nm | 0.005 | 0.1433333 | 0.1 |
PCN | dPHZstar | 0.1uM | PCN | cells | 2 | 8.703 | 562 | 364.0nm | 0.037 | 1.0606667 | 0.1 |
PYO | dPHZstar | 0.1uM | PCN | cells | 2 | 5.950 | 21 | 313.0nm | 0.001 | 0.0286667 | 0.1 |
PCA | dPHZstar | 0.1uM | PCN | cells | 3 | 2.957 | 39 | 364.0nm | 0.003 | 0.0860000 | 0.1 |
PCN | dPHZstar | 0.1uM | PCN | cells | 3 | 8.695 | 487 | 364.0nm | 0.032 | 0.9173333 | 0.1 |
PYO | dPHZstar | 0.1uM | PCN | cells | 3 | 5.911 | 27 | 313.0nm | 0.001 | 0.0286667 | 0.1 |
PCA | dPHZstar | 0.1uM | PYO | cells | 1 | 3.365 | 66 | 364.0nm | 0.004 | 0.1146667 | 0.1 |
PCN | dPHZstar | 0.1uM | PYO | cells | 1 | 8.690 | 682 | 364.0nm | 0.045 | 1.2900000 | 0.1 |
PCA | dPHZstar | 0.1uM | PYO | cells | 2 | 3.191 | 90 | 364.0nm | 0.006 | 0.1720000 | 0.1 |
PCN | dPHZstar | 0.1uM | PYO | cells | 2 | 8.696 | 414 | 364.0nm | 0.027 | 0.7740000 | 0.1 |
PYO | dPHZstar | 0.1uM | PYO | cells | 2 | 6.010 | 448 | 313.0nm | 0.014 | 0.4013333 | 0.1 |
PCA | dPHZstar | 0.1uM | PYO | cells | 3 | 3.344 | 50 | 364.0nm | 0.003 | 0.0860000 | 0.1 |
PCN | dPHZstar | 0.1uM | PYO | cells | 3 | 8.689 | 1331 | 364.0nm | 0.088 | 2.5226667 | 0.1 |
PYO | dPHZstar | 0.1uM | PYO | cells | 3 | 6.006 | 471 | 313.0nm | 0.014 | 0.4013333 | 0.1 |
PCA | dPHZstar | 100uM | PCA | cells | 1 | 3.203 | 11969 | 364.0nm | 0.786 | 22.5320000 | 100.0 |
PCN | dPHZstar | 100uM | PCA | cells | 1 | 8.699 | 1089 | 364.0nm | 0.072 | 2.0640000 | 100.0 |
PYO | dPHZstar | 100uM | PCA | cells | 1 | 6.008 | 22 | 313.0nm | 0.001 | 0.0286667 | 100.0 |
PCA | dPHZstar | 100uM | PCA | cells | 2 | 3.182 | 10593 | 364.0nm | 0.695 | 19.9233333 | 100.0 |
PCN | dPHZstar | 100uM | PCA | cells | 2 | 8.689 | 752 | 364.0nm | 0.050 | 1.4333333 | 100.0 |
PYO | dPHZstar | 100uM | PCA | cells | 2 | 5.933 | 37 | 313.0nm | 0.001 | 0.0286667 | 100.0 |
PCA | dPHZstar | 100uM | PCA | cells | 3 | 3.183 | 7457 | 364.0nm | 0.490 | 14.0466667 | 100.0 |
PCN | dPHZstar | 100uM | PCA | cells | 3 | 8.686 | 821 | 364.0nm | 0.054 | 1.5480000 | 100.0 |
PCA | dPHZstar | 100uM | PCN | cells | 1 | 3.434 | 167 | 364.0nm | 0.011 | 0.3153333 | 100.0 |
PCN | dPHZstar | 100uM | PCN | cells | 1 | 8.856 | 55528 | 364.0nm | 3.663 | 105.0060000 | 100.0 |
PYO | dPHZstar | 100uM | PCN | cells | 1 | 5.962 | 23 | 313.0nm | 0.001 | 0.0286667 | 100.0 |
PCA | dPHZstar | 100uM | PCN | cells | 2 | 3.445 | 162 | 364.0nm | 0.011 | 0.3153333 | 100.0 |
PCN | dPHZstar | 100uM | PCN | cells | 2 | 8.861 | 57086 | 364.0nm | 3.766 | 107.9586667 | 100.0 |
PCA | dPHZstar | 100uM | PCN | cells | 3 | 3.153 | 69 | 364.0nm | 0.005 | 0.1433333 | 100.0 |
PCN | dPHZstar | 100uM | PCN | cells | 3 | 8.847 | 61182 | 364.0nm | 4.036 | 115.6986667 | 100.0 |
PYO | dPHZstar | 100uM | PCN | cells | 3 | 6.035 | 27 | 313.0nm | 0.001 | 0.0286667 | 100.0 |
PCA | dPHZstar | 100uM | PYO | cells | 1 | 3.206 | 79 | 364.0nm | 0.005 | 0.1433333 | 100.0 |
PCN | dPHZstar | 100uM | PYO | cells | 1 | 8.695 | 863 | 364.0nm | 0.057 | 1.6340000 | 100.0 |
PYO | dPHZstar | 100uM | PYO | cells | 1 | 6.010 | 470878 | 313.0nm | 14.484 | 415.2080000 | 100.0 |
PCA | dPHZstar | 100uM | PYO | cells | 2 | 3.447 | 61 | 364.0nm | 0.004 | 0.1146667 | 100.0 |
PCN | dPHZstar | 100uM | PYO | cells | 2 | 8.694 | 977 | 364.0nm | 0.064 | 1.8346667 | 100.0 |
PYO | dPHZstar | 100uM | PYO | cells | 2 | 6.010 | 402519 | 313.0nm | 12.382 | 354.9506667 | 100.0 |
PCA | dPHZstar | 100uM | PYO | cells | 3 | 2.987 | 95 | 364.0nm | 0.006 | 0.1720000 | 100.0 |
PCN | dPHZstar | 100uM | PYO | cells | 3 | 8.696 | 800 | 364.0nm | 0.053 | 1.5193333 | 100.0 |
PYO | dPHZstar | 100uM | PYO | cells | 3 | 6.005 | 364574 | 313.0nm | 11.214 | 321.4680000 | 100.0 |
PCA | dPHZstar | 10uM | PCA | cells | 1 | 3.215 | 602 | 364.0nm | 0.039 | 1.1180000 | 10.0 |
PCN | dPHZstar | 10uM | PCA | cells | 1 | 8.699 | 810 | 364.0nm | 0.053 | 1.5193333 | 10.0 |
PYO | dPHZstar | 10uM | PCA | cells | 1 | 6.083 | 23 | 313.0nm | 0.001 | 0.0286667 | 10.0 |
PCA | dPHZstar | 10uM | PCA | cells | 2 | 3.197 | 151 | 364.0nm | 0.010 | 0.2866667 | 10.0 |
PCN | dPHZstar | 10uM | PCA | cells | 2 | 8.691 | 465 | 364.0nm | 0.031 | 0.8886667 | 10.0 |
PCA | dPHZstar | 10uM | PCA | cells | 3 | 3.167 | 767 | 364.0nm | 0.050 | 1.4333333 | 10.0 |
PCN | dPHZstar | 10uM | PCA | cells | 3 | 8.681 | 714 | 364.0nm | 0.047 | 1.3473333 | 10.0 |
PYO | dPHZstar | 10uM | PCA | cells | 3 | 6.058 | 18 | 313.0nm | 0.001 | 0.0286667 | 10.0 |
PCA | dPHZstar | 10uM | PCN | cells | 1 | 3.450 | 69 | 364.0nm | 0.005 | 0.1433333 | 10.0 |
PCN | dPHZstar | 10uM | PCN | cells | 1 | 8.858 | 6130 | 364.0nm | 0.404 | 11.5813333 | 10.0 |
PYO | dPHZstar | 10uM | PCN | cells | 1 | 6.010 | 33 | 313.0nm | 0.001 | 0.0286667 | 10.0 |
PCA | dPHZstar | 10uM | PCN | cells | 2 | 3.321 | 105 | 364.0nm | 0.007 | 0.2006667 | 10.0 |
PCN | dPHZstar | 10uM | PCN | cells | 2 | 8.864 | 6627 | 364.0nm | 0.437 | 12.5273333 | 10.0 |
PCA | dPHZstar | 10uM | PCN | cells | 3 | 3.446 | 78 | 364.0nm | 0.005 | 0.1433333 | 10.0 |
PCN | dPHZstar | 10uM | PCN | cells | 3 | 8.837 | 7021 | 364.0nm | 0.463 | 13.2726667 | 10.0 |
PYO | dPHZstar | 10uM | PCN | cells | 3 | 5.946 | 25 | 313.0nm | 0.001 | 0.0286667 | 10.0 |
PCA | dPHZstar | 10uM | PYO | cells | 1 | 3.206 | 80 | 364.0nm | 0.005 | 0.1433333 | 10.0 |
PCN | dPHZstar | 10uM | PYO | cells | 1 | 8.680 | 377 | 364.0nm | 0.025 | 0.7166667 | 10.0 |
PYO | dPHZstar | 10uM | PYO | cells | 1 | 6.004 | 38908 | 313.0nm | 1.197 | 34.3140000 | 10.0 |
PCA | dPHZstar | 10uM | PYO | cells | 2 | 3.394 | 76 | 364.0nm | 0.005 | 0.1433333 | 10.0 |
PCN | dPHZstar | 10uM | PYO | cells | 2 | 8.687 | 921 | 364.0nm | 0.061 | 1.7486667 | 10.0 |
PYO | dPHZstar | 10uM | PYO | cells | 2 | 6.012 | 44695 | 313.0nm | 1.375 | 39.4166667 | 10.0 |
PCA | dPHZstar | 10uM | PYO | cells | 3 | 3.267 | 38 | 364.0nm | 0.002 | 0.0573333 | 10.0 |
PCN | dPHZstar | 10uM | PYO | cells | 3 | 8.693 | 1124 | 364.0nm | 0.074 | 2.1213333 | 10.0 |
PYO | dPHZstar | 10uM | PYO | cells | 3 | 6.011 | 42861 | 313.0nm | 1.318 | 37.7826667 | 10.0 |
PCA | dPHZstar | 1uM | PCA | cells | 1 | 3.400 | 62 | 364.0nm | 0.004 | 0.1146667 | 1.0 |
PCN | dPHZstar | 1uM | PCA | cells | 1 | 8.699 | 822 | 364.0nm | 0.054 | 1.5480000 | 1.0 |
PYO | dPHZstar | 1uM | PCA | cells | 1 | 6.056 | 44 | 313.0nm | 0.001 | 0.0286667 | 1.0 |
PCA | dPHZstar | 1uM | PCA | cells | 2 | 2.981 | 69 | 364.0nm | 0.005 | 0.1433333 | 1.0 |
PCN | dPHZstar | 1uM | PCA | cells | 2 | 8.687 | 851 | 364.0nm | 0.056 | 1.6053333 | 1.0 |
PYO | dPHZstar | 1uM | PCA | cells | 2 | 6.039 | 22 | 313.0nm | 0.001 | 0.0286667 | 1.0 |
PCA | dPHZstar | 1uM | PCA | cells | 3 | 3.049 | 61 | 364.0nm | 0.004 | 0.1146667 | 1.0 |
PCN | dPHZstar | 1uM | PCA | cells | 3 | 8.688 | 786 | 364.0nm | 0.052 | 1.4906667 | 1.0 |
PYO | dPHZstar | 1uM | PCA | cells | 3 | 6.095 | 17 | 313.0nm | 0.001 | 0.0286667 | 1.0 |
PCA | dPHZstar | 1uM | PCN | cells | 1 | 3.066 | 46 | 364.0nm | 0.003 | 0.0860000 | 1.0 |
PCN | dPHZstar | 1uM | PCN | cells | 1 | 8.694 | 863 | 364.0nm | 0.057 | 1.6340000 | 1.0 |
PYO | dPHZstar | 1uM | PCN | cells | 1 | 5.903 | 16 | 313.0nm | 0.000 | 0.0000000 | 1.0 |
PCA | dPHZstar | 1uM | PCN | cells | 2 | 2.998 | 72 | 364.0nm | 0.005 | 0.1433333 | 1.0 |
PCN | dPHZstar | 1uM | PCN | cells | 2 | 8.703 | 845 | 364.0nm | 0.056 | 1.6053333 | 1.0 |
PYO | dPHZstar | 1uM | PCN | cells | 2 | 5.985 | 24 | 313.0nm | 0.001 | 0.0286667 | 1.0 |
PCA | dPHZstar | 1uM | PCN | cells | 3 | 3.066 | 69 | 364.0nm | 0.004 | 0.1146667 | 1.0 |
PCN | dPHZstar | 1uM | PCN | cells | 3 | 8.853 | 653 | 364.0nm | 0.043 | 1.2326667 | 1.0 |
PYO | dPHZstar | 1uM | PCN | cells | 3 | 6.048 | 44 | 313.0nm | 0.001 | 0.0286667 | 1.0 |
PCA | dPHZstar | 1uM | PYO | cells | 1 | 3.398 | 52 | 364.0nm | 0.003 | 0.0860000 | 1.0 |
PCN | dPHZstar | 1uM | PYO | cells | 1 | 8.698 | 729 | 364.0nm | 0.048 | 1.3760000 | 1.0 |
PYO | dPHZstar | 1uM | PYO | cells | 1 | 6.012 | 1991 | 313.0nm | 0.061 | 1.7486667 | 1.0 |
PCA | dPHZstar | 1uM | PYO | cells | 2 | 3.168 | 50 | 364.0nm | 0.003 | 0.0860000 | 1.0 |
PCN | dPHZstar | 1uM | PYO | cells | 2 | 8.691 | 1344 | 364.0nm | 0.089 | 2.5513333 | 1.0 |
PYO | dPHZstar | 1uM | PYO | cells | 2 | 6.004 | 2238 | 313.0nm | 0.069 | 1.9780000 | 1.0 |
PCA | dPHZstar | 1uM | PYO | cells | 3 | 3.004 | 115 | 364.0nm | 0.008 | 0.2293333 | 1.0 |
PCN | dPHZstar | 1uM | PYO | cells | 3 | 8.701 | 1335 | 364.0nm | 0.088 | 2.5226667 | 1.0 |
PYO | dPHZstar | 1uM | PYO | cells | 3 | 6.021 | 2294 | 313.0nm | 0.071 | 2.0353333 | 1.0 |
PCA | dPHZstar | 200uM | PCA | cells | 1 | 3.185 | 22915 | 364.0nm | 1.504 | 43.1146667 | 200.0 |
PCN | dPHZstar | 200uM | PCA | cells | 1 | 8.675 | 859 | 364.0nm | 0.057 | 1.6340000 | 200.0 |
PYO | dPHZstar | 200uM | PCA | cells | 1 | 6.027 | 42 | 313.0nm | 0.001 | 0.0286667 | 200.0 |
PCA | dPHZstar | 200uM | PCA | cells | 2 | 3.182 | 24033 | 364.0nm | 1.578 | 45.2360000 | 200.0 |
PCN | dPHZstar | 200uM | PCA | cells | 2 | 8.684 | 668 | 364.0nm | 0.044 | 1.2613333 | 200.0 |
PYO | dPHZstar | 200uM | PCA | cells | 2 | 5.920 | 24 | 313.0nm | 0.001 | 0.0286667 | 200.0 |
PCA | dPHZstar | 200uM | PCA | cells | 3 | 3.178 | 18464 | 364.0nm | 1.212 | 34.7440000 | 200.0 |
PCN | dPHZstar | 200uM | PCA | cells | 3 | 8.680 | 928 | 364.0nm | 0.061 | 1.7486667 | 200.0 |
PCA | dPHZstar | 200uM | PCN | cells | 1 | 3.241 | 176 | 364.0nm | 0.012 | 0.3440000 | 200.0 |
PCN | dPHZstar | 200uM | PCN | cells | 1 | 8.663 | 101344 | 364.0nm | 6.685 | 191.6366667 | 200.0 |
PYO | dPHZstar | 200uM | PCN | cells | 1 | 6.013 | 31 | 313.0nm | 0.001 | 0.0286667 | 200.0 |
PCA | dPHZstar | 200uM | PCN | cells | 2 | 3.137 | 113 | 364.0nm | 0.007 | 0.2006667 | 200.0 |
PCN | dPHZstar | 200uM | PCN | cells | 2 | 8.857 | 95428 | 364.0nm | 6.295 | 180.4566667 | 200.0 |
PYO | dPHZstar | 200uM | PCN | cells | 2 | 5.946 | 20 | 313.0nm | 0.001 | 0.0286667 | 200.0 |
PCA | dPHZstar | 200uM | PCN | cells | 3 | 3.064 | 127 | 364.0nm | 0.008 | 0.2293333 | 200.0 |
PCN | dPHZstar | 200uM | PCN | cells | 3 | 8.866 | 120549 | 364.0nm | 7.952 | 227.9573333 | 200.0 |
PYO | dPHZstar | 200uM | PCN | cells | 3 | 6.067 | 26 | 313.0nm | 0.001 | 0.0286667 | 200.0 |
PCA | dPHZstar | 200uM | PYO | cells | 1 | 3.142 | 81 | 364.0nm | 0.005 | 0.1433333 | 200.0 |
PCN | dPHZstar | 200uM | PYO | cells | 1 | 8.692 | 586 | 364.0nm | 0.039 | 1.1180000 | 200.0 |
PYO | dPHZstar | 200uM | PYO | cells | 1 | 6.002 | 822507 | 313.0nm | 25.301 | 725.2953333 | 200.0 |
PCA | dPHZstar | 200uM | PYO | cells | 2 | 3.173 | 94 | 364.0nm | 0.006 | 0.1720000 | 200.0 |
PCN | dPHZstar | 200uM | PYO | cells | 2 | 8.682 | 603 | 364.0nm | 0.040 | 1.1466667 | 200.0 |
PYO | dPHZstar | 200uM | PYO | cells | 2 | 5.997 | 809545 | 313.0nm | 24.902 | 713.8573333 | 200.0 |
PCA | dPHZstar | 200uM | PYO | cells | 3 | 3.392 | 78 | 364.0nm | 0.005 | 0.1433333 | 200.0 |
PCN | dPHZstar | 200uM | PYO | cells | 3 | 8.699 | 625 | 364.0nm | 0.041 | 1.1753333 | 200.0 |
PYO | dPHZstar | 200uM | PYO | cells | 3 | 6.001 | 763048 | 313.0nm | 23.472 | 672.8640000 | 200.0 |
PCA | dPHZstar | 50uM | PCA | cells | 1 | 3.212 | 5893 | 364.0nm | 0.387 | 11.0940000 | 50.0 |
PCN | dPHZstar | 50uM | PCA | cells | 1 | 8.686 | 915 | 364.0nm | 0.060 | 1.7200000 | 50.0 |
PYO | dPHZstar | 50uM | PCA | cells | 1 | 5.963 | 21 | 313.0nm | 0.001 | 0.0286667 | 50.0 |
PCA | dPHZstar | 50uM | PCA | cells | 2 | 3.190 | 2312 | 364.0nm | 0.152 | 4.3573333 | 50.0 |
PCN | dPHZstar | 50uM | PCA | cells | 2 | 8.689 | 356 | 364.0nm | 0.023 | 0.6593333 | 50.0 |
PYO | dPHZstar | 50uM | PCA | cells | 2 | 5.930 | 25 | 313.0nm | 0.001 | 0.0286667 | 50.0 |
PCA | dPHZstar | 50uM | PCA | cells | 3 | 3.172 | 3501 | 364.0nm | 0.230 | 6.5933333 | 50.0 |
PCN | dPHZstar | 50uM | PCA | cells | 3 | 8.692 | 660 | 364.0nm | 0.044 | 1.2613333 | 50.0 |
PCA | dPHZstar | 50uM | PCN | cells | 1 | 3.444 | 191 | 364.0nm | 0.013 | 0.3726667 | 50.0 |
PCN | dPHZstar | 50uM | PCN | cells | 1 | 8.852 | 33228 | 364.0nm | 2.192 | 62.8373333 | 50.0 |
PYO | dPHZstar | 50uM | PCN | cells | 1 | 5.963 | 29 | 313.0nm | 0.001 | 0.0286667 | 50.0 |
PCA | dPHZstar | 50uM | PCN | cells | 2 | 3.442 | 110 | 364.0nm | 0.007 | 0.2006667 | 50.0 |
PCN | dPHZstar | 50uM | PCN | cells | 2 | 8.853 | 34817 | 364.0nm | 2.297 | 65.8473333 | 50.0 |
PYO | dPHZstar | 50uM | PCN | cells | 2 | 5.907 | 32 | 313.0nm | 0.001 | 0.0286667 | 50.0 |
PCA | dPHZstar | 50uM | PCN | cells | 3 | 3.444 | 109 | 364.0nm | 0.007 | 0.2006667 | 50.0 |
PCN | dPHZstar | 50uM | PCN | cells | 3 | 8.856 | 32346 | 364.0nm | 2.134 | 61.1746667 | 50.0 |
PYO | dPHZstar | 50uM | PCN | cells | 3 | 6.071 | 27 | 313.0nm | 0.001 | 0.0286667 | 50.0 |
PCA | dPHZstar | 50uM | PYO | cells | 1 | 2.959 | 114 | 364.0nm | 0.007 | 0.2006667 | 50.0 |
PCN | dPHZstar | 50uM | PYO | cells | 1 | 8.692 | 1036 | 364.0nm | 0.068 | 1.9493333 | 50.0 |
PYO | dPHZstar | 50uM | PYO | cells | 1 | 6.008 | 251039 | 313.0nm | 7.722 | 221.3640000 | 50.0 |
PCA | dPHZstar | 50uM | PYO | cells | 2 | 3.014 | 91 | 364.0nm | 0.006 | 0.1720000 | 50.0 |
PCN | dPHZstar | 50uM | PYO | cells | 2 | 8.687 | 365 | 364.0nm | 0.024 | 0.6880000 | 50.0 |
PYO | dPHZstar | 50uM | PYO | cells | 2 | 6.000 | 307890 | 313.0nm | 9.471 | 271.5020000 | 50.0 |
PCA | dPHZstar | 50uM | PYO | cells | 3 | 3.192 | 71 | 364.0nm | 0.005 | 0.1433333 | 50.0 |
PCN | dPHZstar | 50uM | PYO | cells | 3 | 8.690 | 841 | 364.0nm | 0.055 | 1.5766667 | 50.0 |
PYO | dPHZstar | 50uM | PYO | cells | 3 | 6.002 | 227059 | 313.0nm | 6.984 | 200.2080000 | 50.0 |
You can see that I’ve already calculated the biofilm concentrations for this dataset. You can also see that each colony was recorded with the amount of synthetic phenazine added to the agar. Let’s calculate means for each group and look at an overview of the measurements.
# Names for facet panels
facet_labels = c(PCA = "PCA added", PCN = "PCN added", PYO = "PYO added")
# Plot layout
plot_dphz_overview <- ggplot(dphz_extracts, aes(x = measured_phenazine, y = calcConc, fill = amount_added)) +
geom_jitter(shape = 21, height = 0, width = 0.1, size = 2)+
facet_wrap(~added_phenazine, scale = 'free', labeller = labeller(added_phenazine = facet_labels))
# Plot styling
plot_dphz_overview +
scale_fill_viridis(discrete = T, breaks = c('0.1uM','1uM','10uM','50uM','100uM','200uM')) +
labs(fill = "Amount of\nphenazine added" ,
x = "Phenazine measured",
y = expression("Biofilm concentration" ~ ( mu*M )) )
Ok, so we can see that when we add a phenazine to this strain, we only measure significant amounts of that phenazine. Therefore, this mutant is “phenazine inert.” There is a little bit of PCN detected, but upon inspection of the chromatograms and MS, it is a persistent background peak that is not actually PCN.
So, let’s proceed and just look at the measured phenazines that match the added phenazine, and we’ll calculate some means.
# Calculate Means
dphz_extracts_means <- dphz_extracts %>%
filter(measured_phenazine==added_phenazine) %>%
group_by(measured_phenazine,amount_added) %>%
mutate(mean = mean(calcConc))
# Plot layout
plot_dphz_binding <- ggplot(dphz_extracts_means, aes(x=added_phz_num,y=calcConc))+
geom_line(size=0.5, aes(y=mean, group = measured_phenazine))+
geom_point(size=1, aes(shape=measured_phenazine)) +
geom_abline(slope=1, intercept =0, linetype = 2)
# Plot styling
plot_dphz_binding_styled <- plot_dphz_binding +
scale_shape_discrete(solid=F, guide = F)+
labs(x=expression('Phenazine added to agar ('~mu*"M)"),
y = expression("Biofilm\nconcentration" ~ ( mu*M )) ) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank(),
legend.background = element_rect(fill=NA),
axis.text.y = element_text(angle = 45, hjust = 1))
plot_dphz_binding_styled
pdaMan_data <- read_csv("../../../data/LC-MS/dPHZstar_PDAmanual_PHZretention_08_29_18.csv") %>%
mutate(calcConc = Amount * 2 *(800 / 62) ) %>%
group_by(Condition,Day,measured_phenazine) %>%
mutate(mean = ifelse(Rep==1,mean(calcConc),NA))
dphz_ret_pdaMan_plot <- ggplot(pdaMan_data %>% filter(Condition =='PHZ'), aes(x = Day, y = calcConc, )) +
geom_col(aes(y = mean,fill = Day))+
geom_jitter(height = 0, width = 0.1, shape = 21) +
facet_wrap(~measured_phenazine, scales = 'free') +
ylim(0,NA)
#Plot styling
dphz_ret_pdaMan_plot_styled <- dphz_ret_pdaMan_plot +
labs(x = NULL, y = "Phenazine Concentration") +
theme(axis.title.x = element_text(size = 14)) +
scale_fill_manual(guide = F, values = c("#66CCFF","#FFCC66")) +
scale_x_discrete(breaks = c('D3','D4'),
labels=c("Day 3","Day 4"))
dphz_ret_pdaMan_plot_styled
For dPHZ* incubated with individual phenazines
pdaMan_indPhz_plot <- ggplot(pdaMan_data %>% filter(Condition == measured_phenazine), aes(x = Day, y = calcConc )) +
geom_col(aes(y = mean), fill='light gray')+
geom_jitter(height = 0, width = 0.1, shape = 21, size = 1) +
facet_wrap(~measured_phenazine, scales = 'free') +
ylim(0,NA)
#Plot styling
pdaMan_indPhz_plot_styled <- pdaMan_indPhz_plot +
labs(x = NULL, y = expression("Biofilm concentration" ~ (mu*M ))) +
theme(axis.title.x = element_text(size = 14)) +
scale_fill_manual(guide = F, values = c("#66CCFF","#FFCC66")) +
scale_x_discrete(breaks = c('D3','D4'), labels=c("Day 3","Day 4"))+
theme(axis.text.x = element_text(angle = 45, hjust = 1))
pdaMan_indPhz_plot_styled
df_d3 <- pdaMan_data %>% filter(Condition == measured_phenazine) %>% filter(Day == 'D3') %>% mutate(d3_conc = calcConc) %>% select(measured_phenazine, Rep, d3_conc, )
df_d4 <- pdaMan_data %>% filter(Condition == measured_phenazine) %>% filter(Day == 'D4')%>% mutate(d4_conc = calcConc) %>% select(measured_phenazine, Rep, d4_conc)
df_d3_d4 <- left_join(df_d3, df_d4, by = c('measured_phenazine','Rep')) %>%
mutate(percent_retained = d4_conc / d3_conc) %>%
group_by(measured_phenazine) %>%
mutate(mean = ifelse(Rep == 1, mean(percent_retained), NA))
per_ret_plot <- ggplot(df_d3_d4, aes(x = measured_phenazine, y = percent_retained, )) +
geom_col(aes(y = mean), fill='light gray')+
geom_jitter(height = 0, width = 0.1, shape = 21, size = 1) +
ylim(0,NA)
#Plot styling
per_ret_plot_styled <- per_ret_plot +
labs(x = NULL, y = 'Biofilm retained\nphenazine', title = '24 hrs post incubation') +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
per_ret_plot_styled
theme_set(theme_figure())
fig_1 <- plot_grid(plot_wt_free_styled,wt_ret_ratio_styled,
plot_dphz_binding_styled, per_ret_plot_styled,
ncol = 2, rel_heights = c(1,1), rel_widths = c(1.5,1),
align = 'hv', axis = 'lr', scale = 1.0,
labels = c('E','F','G','H'))
fig_1
## R version 3.5.3 (2019-03-11)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS 10.15.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] lubridate_1.7.4 hms_0.5.3 modelr_0.1.5
## [4] broom_0.5.2 kableExtra_1.1.0 cowplot_0.9.4
## [7] viridis_0.5.1 viridisLite_0.3.0 knitr_1.23
## [10] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.3
## [13] purrr_0.3.3 readr_1.3.1 tidyr_1.0.0
## [16] tibble_2.1.3 ggplot2_3.3.0 tidyverse_1.3.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_0.2.5 xfun_0.7 haven_2.2.0 lattice_0.20-38
## [5] colorspace_1.4-1 vctrs_0.3.1 generics_0.0.2 htmltools_0.4.0
## [9] yaml_2.2.0 rlang_0.4.6 pillar_1.4.2 glue_1.3.1
## [13] withr_2.1.2 DBI_1.0.0 dbplyr_1.4.2 readxl_1.3.1
## [17] lifecycle_0.1.0 munsell_0.5.0 gtable_0.3.0 cellranger_1.1.0
## [21] rvest_0.3.5 evaluate_0.14 labeling_0.3 highr_0.8
## [25] Rcpp_1.0.2 scales_1.0.0 backports_1.1.4 webshot_0.5.1
## [29] jsonlite_1.6 fs_1.3.1 gridExtra_2.3 digest_0.6.21
## [33] stringi_1.4.3 grid_3.5.3 cli_1.1.0 tools_3.5.3
## [37] magrittr_1.5 crayon_1.3.4 pkgconfig_2.0.3 xml2_1.2.2
## [41] reprex_0.3.0 assertthat_0.2.1 rmarkdown_1.13 httr_1.4.1
## [45] rstudioapi_0.10 R6_2.4.0 nlme_3.1-137 compiler_3.5.3